calculus infography
Avatar
CalculusPop
CalculusPop
Hey, let's solve some calculus with CalculusPop
 
Differentiation

To differentiate a quotient of two functions, you can apply the quotient rule. The quotient rule states that for two functions f(x) and g(x), the derivative of \frac{f(x)}{g(x)} is given by the formula:

\left(\frac{f(x)}{g(x)}\right)' = \frac{f'(x) \cdot g(x) - f(x) \cdot g'(x)}{(g(x))^2}

To solve for the derivative of a quotient, follow these steps:

1. Identify the functions f(x) and g(x) in the quotient \frac{f(x)}{g(x)}.

2. Find the derivative of f(x) and g(x), denoted as f'(x) and g'(x) respectively.

3. Apply the quotient rule formula: \left(\frac{f(x)}{g(x)}\right)' = \frac{f'(x) \cdot g(x) - f(x) \cdot g'(x)}{(g(x))^2}, plugging in the values of f'(x), g'(x), f(x), and g(x) into the formula.

4. Simplify the expression to obtain the derivative of the quotient.

5. If necessary, further simplify or rearrange the expression to make it more readable or usable in a specific context.

1. Find the derivative of f(x) = \frac{2x^2 + 3x + 4}{x^2 + x - 1}.

Solution:

To find the derivative of the quotient, f(x) = \frac{g(x)}{h(x)}, we can use the quotient rule:

f'(x) = \frac{g'(x)h(x) - g(x)h'(x)}{(h(x))^2}.

First, find g'(x) and h'(x):

g'(x) = 4x + 3 and h'(x) = 2x + 1.

Now, plug the values into the formula:

f'(x) = \frac{(4x+3)(x^2 + x - 1) - (2x^2 + 3x + 4)(2x+1)}{(x^2 + x - 1)^2}.

After simplifying, f'(x) = \frac{4x^3 + 4x^2 + 4x - 3 - 4x^3 - 2x^2 - 8x - 1}{(x^2 + x - 1)^2}.

f'(x) = \frac{2x^2 - 4x - 4}{(x^2 + x - 1)^2}.

2. Determine the derivative of f(x) = \frac{3x^3 + 2x^2 + x - 5}{x^2 - 4x + 4}.
Solution:

Using the quotient rule:

f'(x) = \frac{(9x^2 + 4x + 1)(x^2 - 4x + 4) - (3x^3 + 2x^2 + x - 5)(2x - 4)}{(x^2 - 4x + 4)^2}.

After simplifying, f'(x) = \frac{9x^4 - 36x^3 + 36x^2 + 4x^3 - 16x^2 + 16x + x^2 - 4x - 4 - 6x^4 - 4x^3 - 2x^2 + 10x}{(x^2 - 4x + 4)^2}.

f'(x) = \frac{3x^4 - 16x^3 + 22x^2 + 22x - 4}{(x^2 - 4x + 4)^2}.

3. Find the derivative of f(x) = \frac{x^4 + x^3 + x^2 - x + 1}{x^2 - 1}.

Solution:

Using the quotient rule:

f'(x) = \frac{(4x^3 + 3x^2 + 2x - 1)(x^2 - 1) - (x^4 + x^3 + x^2 - x + 1)(2x)}{(x^2 - 1)^2}.

After simplifying, f'(x) = \frac{4x^5 - 4x^3 + 3x^4 - 3x^2 + 2x^3 - 2x - x^5 - x^4 - x^3 + x + 2x}{(x^2 - 1)^2}.

f'(x) = \frac{3x^5 + 2x^4 + x^3 - x}{(x^2 - 1)^2}.

4. Calculate the derivative of f(x) = \frac{5x^3 - 2x^2 + x + 3}{x^2 + 3x + 2}.

Solution:

Using the quotient rule:
f'(x) = \frac{(15x^2 - 4x + 1)(x^2 + 3x + 2) - (5x^3 - 2x^2 + x + 3)(2x + 3)}{(x^2 + 3x + 2)^2}.
After simplifying, f'(x) = \frac{15x^4 + 45x^3 + 10x^3 + 30x^2 + x^2 + 3x - 4x^3 - 12x^2 - 8x - 5x^3 + 2x^2 - x - 3}{(x^2 + 3x + 2)^2}.
f'(x) = \frac{15x^4 + 40x^3 + 20x^2 - 5x - 3}{(x^2 + 3x + 2)^2}.

5. Find the derivative of f(x) = \frac{x^3 + x^2 - x - 1}{x^2 - 2x + 1}.

Solution:

Using the quotient rule:

f'(x) = \frac{(3x^2 + 2x - 1)(x^2 - 2x + 1) - (x^3 + x^2 - x - 1)(2x - 2)}{(x^2 - 2x + 1)^2}.

After simplifying, f'(x) = \frac{3x^4 - 6x^3 + 2x^3 - 4x^2 + x^2 + 2x - x - 2 - 2x^3 + 4x^2 - 2x + 2}{(x^2 - 2x + 1)^2}.

f'(x) = \frac{3x^4 - 4x^3 + 5x^2 + 3}{(x^2 - 2x + 1)^2}.

Questions

1. Find the derivative of the function  f(x) = (x^2 + 3x) / (2x + 4).
f'(x) = \frac{2x(2x+4) - (x^2 + 3x)2}{(2x + 4)^2}

2. Determine the derivative of g(x) = (2x^3 - x^2) / (3x - 1).
g'(x) = \frac{6x^2(3x - 1) - (2x^3 - x^2)3}{(3x - 1)^2}

3. Calculate the derivative of h(x) = (4x^2 + 5x) / (x^2 + 2x).
h'(x) = \frac{8x(x^2 + 2x) - (4x^2 + 5x)(2x + 2)}{(x^2 + 2x)^2}

4. Find the derivative of the function k(x) = (3x^2 + 2x) / (4x^2 - 2x).
k'(x) = \frac{6x(4x^2 - 2x) - (3x^2 + 2x)8}{(4x^2 - 2x)^2}

5. Determine the derivative of l(x) = (5x^3 + 4x) / (x^3 - 3x).
l'(x) = \frac{15x^2(x^3-3x) - (5x^3 + 4x)(3x^2 - 3)}{(x^3 - 3x)^2}

6. Calculate the derivative of m(x) = (2x^2 - x) / (x^2 + x).
m'(x) = \frac{4x(x^2 + x) - (2x^2 - x)(2x + 1)}{(x^2 + x)^2}

7. Find the derivative of the function n(x) = (x^2 + 3x) / (2x^2 - x).
n'(x) = \frac{2x(2x^2 - x) - (x^2 + 3x)(4x - 1)}{(2x^2 - x)^2}

8. Determine the derivative of p(x) = (4x^3 - 2x) / (x^3 + 2x).
p'(x) = \frac{12x^2(x^3 + 2x) - (4x^3 - 2x)(3x^2 + 2)}{(x^3 + 2x)^2}

9. Calculate the derivative of q(x) = (3x^2 - x) / (4x^2 + 5x).
q'(x) = \frac{6x(4x^2 + 5x) - (3x^2 - x)(8x + 5)}{(4x^2 + 5x)^2}

10. Find the derivative of the function r(x) = (x^3 + 2x) / (3x^3 - x).
r'(x) = \frac{3x^2(3x^3 - x) - (x^3 + 2x)(9x^2 - 1)}{(3x^3 - x)^2}

11. Determine the derivative of s(x) = (4x^2 - 3x) / (2x^2 + 4x).
s'(x) = \frac{8x(2x^2 + 4x) - (4x^2 - 3x)(4x + 4)}{(2x^2 + 4x)^2}

12. Calculate the derivative of t(x) = (x^3 + x) / (2x^3 - 3x).
t'(x) = \frac{3x^2(2x^3 - 3x) - (x^3 + x)(6x^2 - 3)}{(2x^3 - 3x)^2}

13. Find the derivative of the function u(x) = (3x^2 + 4x) / (x^2 + x).
u'(x) = \frac{6x(x^2 + x) - (3x^2 + 4x)(2x + 1)}{(x^2 + x)^2}

14. Determine the derivative of v(x) = (2x^3 - x) / (4x^2 + 3x).
v'(x) = \frac{6x^2(4x^2 + 3x) - (2x^3 - x)(8x + 3)}{(4x^2 + 3x)^2}

15. Calculate the derivative of w(x) = (x^3 - x) / (3x^2 + 2x).
w'(x) = \frac{3x^2(3x^2 + 2x) - (x^3 - x)(6x + 2)}{(3x^2 + 2x)^2}

Previous Lesson
Classroom: Differentiation function of a function
Next Lesson
Classroom: Differentiation of e^(ax) and ln (ax)

Classroom: Differentiation of a quotient

\left(\frac{f(x)}{g(x)}\right)' = \frac{f'(x) \cdot g(x) - f(x) \cdot g'(x)}{(g(x))^2}

Calculus Archives

Useful Calculus links

Integral Calculus AI
Integral calculus AI solver can help solve various types of integration problems, including standard...
Differentiate 3In5x With Steps
To differentiate the expression 3ln5x with respect to x, we will use the chain rule of differentiation....
Classroom: Differentiation of a quotient
The differentiation of a quotient involves applying the quotient rule, which states that the derivative...
Differentiation Solver AI
CalculusPop differential calculus AI solver that can handle a variety of differentiation problems. It...
Classroom: Differentiation from first principles
Differentiation from first principles is a method of finding the derivative of a function by using the...
Ads Blocker Image Powered by Code Help Pro

Ads Blocker Detected!!!

We have detected that you are using extensions to block ads. Please support us by disabling these ads blocker.

Powered By
100% Free SEO Tools - Tool Kits PRO