Differentiate tan(3x) With Steps

Answer

calculus infography

Answer

Differentiation of a \tan(3x)

To differentiate the function \tan(3x) with respect to x, we must use the chain rule. The derivative of tan(u) is sec^2(u), where u is the input to the tangent function.

In this case, u = 3x . Therefore, the derivative of \tan(3x) with respect to x is given as:

\frac{d}{dx} \left( \tan(3x) \right) = \sec^2(3x) \cdot 3

Thus, the derivative of \tan(3x) with respect to x is 3\times \sec^2 {(3x)}

This result can be applied in further analysis and calculations involving the tangent function.

You can also differentiate coefficient of x in the following form

Common functions

7

6x

x^{1/2}

2x^2

Exponential functions

-e^{-\frac{12}{7x}}

-3e^{2x}

Trigonometric functions

4 \sin (x)

-\cos(3x)

Logarithmic functions

4In9x

1. Find the derivative of the function -2x^{-\frac{1}{2}}.

Solution:

To find the derivative of a function in the form f(x) = ax^n, where a and n are constants, we use the power rule. The derivative is given by:

f'(x) = n \cdot a \cdot x^{n-1}.

Applying this rule to the given function, we have:

f'(x) = -\frac{1}{2} \cdot -2 \cdot x^{-\frac{1}{2}-1}</p><p>= x^{-\frac{3}{2}}.

Therefore, the derivative of -2x^{-\frac{1}{2}} is

x^{-\frac{3}{2}}.

2. Determine the derivative of e^{x}.

Solution:

The derivative of e^{x} is itself, as the derivative of

e^{x} is e^{x}.

This is a unique property of the exponential function e^{x}.

Therefore, the derivative of e^{x} is

e^{x}.

3. Calculate the derivative of 4\cos(9x).

Solution:
By applying the chain rule and derivative of cosine function, we have:

f'(x) = -4 \cdot 9 \sin(9x) = -36 \sin(9x).

Therefore, the derivative of 4\cos(9x) is

-36 \sin(9x).

4. Find the derivative of -3e^{\frac{8}{5}x}.

Solution:

Similarly to the derivative of e^{x}, the derivative of e^{\frac{8}{5}x} is itself times the constant \frac{8}{5}:

f'(x) = -3 \cdot \frac{8}{5} e^{\frac{8}{5}x} = -\frac{24}{5} e^{\frac{8}{5}x}.

Therefore, the derivative of -3e^{\frac{8}{5}x} is

-\frac{24}{5} e^{\frac{8}{5}x}.

5. Differentiate the function 4\sin(2x).

Solution:

Using the chain rule and derivative of the sine function, we get:

f'(x) = 4 \cdot 2 \cos(2x)= 8 \cos(2x).

Therefore, the derivative of 4\sin(2x) is

8\cos(2x).

1. \frac{d}{dx}\left(-2x^{-\frac{1}{2}}\right) = x^{-\frac{3}{2}}

2. \frac{d}{dx}\left(-e^x\right) = -e^x

3. \frac{d}{dx}\left(4\cos(9x)\right) = -36\sin(9x)

4. \frac{d}{dx}\left(-3e^{\frac{8}{5}x}\right) = -\frac{24}{5}e^{\frac{8}{5}x}

5. \frac{d}{dx}\left(5\ln x\right) = \frac{5}{x}

6. \frac{d}{dx}\left(2x^3\right) = 6x^2

7. \frac{d}{dx}\left(9e^{-2x}\right) = -18e^{-2x}

8. \frac{d}{dx}\left(7\sin(2x)\right) = 14\cos(2x)

9. \frac{d}{dx}\left(-4e^{5x}\right) = -20e^{5x}

10. \frac{d}{dx}\left(3\ln(4x)\right) = \frac{3}{x}

11. \frac{d}{dx}\left(-5\cos(3x)\right) = 15\sin(3x)

12. \frac{d}{dx}\left(6e^{-4x}\right) = -24e^{-4x}

13. \frac{d}{dx}\left(2\sin(5x)\right) = 10\cos(5x)

14. \frac{d}{dx}\left(8e^{2x}\right) = 16e^{2x}

15. \frac{d}{dx}\left(4\ln(3x)\right) = \frac{4}{x}

Previous Lesson
Next Lesson

Sample Expressions

For best result write

1 as 1

-1 as -1

x as x

-x  as -x

x^{1/2}  as x^(1/2)

x^{-1/2} as x^-(1/2)

-x^{1/2}  as - x^(1/2)

-x^{-1/2}  as - x^-(1/2)

-2x as -2x

2x^2  as 2x^2

-2x^2  as -2x^2

2x^{1/2} as 2x^(1/2)

2x^{-1/2} as 2x^-(1/2)

-2x^{1/2}  as -2x^(1/2)

-2x^{-1/2}  as -2x^-(1/2)

2x^{-1} as 2x^-1

-2x^{-1}  as -2x^-1

-x^{-1}  as -x^-1

x^{-1} as x^-1

x^2 as x^2

-x^2 -x^2

-x^{-2} -x^-2

2x as 2x

e^x as e^x

-e^x as -e^x

-e^{-x} as -e^-x

e^{2x} as e^(2x)

e^{-2x} as  e^-(2x)

-e^{2x} as -e^-(2x)

-e^{-2x} as e^-(2x)

e^{8/5x} as e^(8/5x)

e^{-8/5x} as e^-(8/5x)

-e^{8/5x} as -e^-(8/5x)

-e^{-8/5x} as -e^-(8/5x)

3e^x as 3e^x

3e^{-x} as 3e^-x

-3e^x as -3e^x

-3e^{-x} as -3e^-x

3e^{2x} as 3e^(2x)

3e^{-2x} as 3e^-(2x)

-3e^{2x} as -3e^(2x)

-3e^{-2x} as -3e^(-2x)

3e^{8/5x} as 3e^(8/5x)

3e^{-8/5x} as 3e^(-8/5x)

-3e^{8/5x} as -3e^(8/5x)

-3e^{-8/5x} as -3e^(-8/5x)

-\cos(x) as -cos(x)

4\sin(x) as 4 sin(x)

-\tan(3x) - tan(3x)

See more View less

Calculus Archives

Useful Calculus links

Differentiate x^(1/2) With Steps
When you differentiate the function √x or x^(1/2), we use the power rule of differentiation. Let y =...
Differentiate -1/√x With Steps
The differentiation of the function -1/√x involves using the power rule for differentiation. By rewriting...
Differentiate 4 sin(x)With Steps
To differentiate the function 4 sin(x) with respect to x, we apply the rules of differentiation. The...
Differentiate tan(3x) With Steps
To differentiate the function tan(3x) with respect to x, we must use the chain rule. The derivative of...
Classroom: Differentiation function of a function
To differentiate a function of a function, also known as composite functions, you can use the chain rule....
Ads Blocker Image Powered by Code Help Pro

Ads Blocker Detected!!!

We have detected that you are using extensions to block ads. Please support us by disabling these ads blocker.

Powered By
100% Free SEO Tools - Tool Kits PRO

Calculus playground

Answer

Answer

Order of differentiation